摘要:现有的基于深度学习的水下图像增强方法在仿真的水下图像上取得了良好的效果。但是,由于简化的仿真图像与复杂的真实图像之间存在较大差距,此类方法在处理真实水下图像时性能明显下降。为了解决真实水下图像增强问题,提出了一种联合生成-去除水下图像增强方法。该方法采用分解思路,将水下图像分解为干净的背景层和退化层,通过循环一致性损失和对抗性损失来更好地保留背景,进而实现真实图像和仿真图像之间的转换,既校正了图像颜色,又提升了图像对比度,实现良好的增强效果。实验结果表明,本方法在真实水下图像数据集上处理的结果,在色彩、纹理细节和清晰程度方面均优于现有的对比方法。