基于注意力的光照感知水下图像复原网络
DOI:
CSTR:
作者:
作者单位:

1.西安电子科技大学 综合业务网理论及关键技术国家重点实验室;2.南京莱斯电子设备有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省自然科学基金面上项目(项目编号:2021JM-125)


Illumination aware underwater restoration network with attention mechanism
Author:
Affiliation:

1.State Key Laboratory of Integrated Service Networks,Xidian University,Xi’an;2.Nanjing Les Electronic Equipment Co Ltd,Nanjing

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水下环境光线昏暗,仅依靠自然光源难以清晰成像,通常需要增加人工光源,但人工光源的引入会导致场景亮度不均。在这种包含自然光源和人工光源的混合光照环境下,所拍摄的水下图像质量严重退化,不仅降低视觉观感,更影响后续高级计算机视觉任务的顺利开展。然而现有方法大都只考虑了自然光源的影响,对混合光源环境下的水下图像复原效果不佳。为了解决混合光源环境下水下图像存在的光照不均、色偏、细节模糊等问题,本文提出了一个光照感知编解码器网络用于水下图像复原。一方面,在多尺度结构中引入注意力机制和改进残差结构高效提取丰富的结构细节特征,另一方面增加光照感知图作为先验约束网络复原结果的对比度。此外,设计了合适的损失函数,引导网络充分学习水下图像和清晰图像间的非线性映射关系,使恢复图像的色调更自然,纹理细节更丰富。对比试验结果证明本文方法在主观感知和客观指标上均优于对比算法,消融实验证明本文所提网络模块和光照感知的有效性。

    Abstract:

    Artificial light sources are necessary to assist the illumination especially for underwater environment with dim natural light. However, inappropriate artificial lighting will lead to uneven brightness of the picture. The quality of underwater images taken by this hybrid light source is severely degraded, which not only affects visual perception, but also poses a challenge to the development of subsequent high-level computer vision tasks. However, most of the existing methods only consider the influence of natural light source, which is not good for underwater image restoration under hybrid light source environment. To handle the problems of uneven brightness, color bias and blurry details, we propose an Illumination-aware Encoder-Decoder Network (IEDN) with attention mechanism for underwater image restoration. On the one hand, attention mechanism and enhanced residual block are incorporated into a multi-scale structure to effectively extract detailed structure features. On the other hand, illumination aware map is introduced as a priory constraint to balance the contrast of the restoration results. Meanwhile, appropriate loss functions are designed to guide the network to fully learn the nonlinear mapping relationship between the underwater image and the ground truth. In this way, the tone of the restored image is more natural and the texture details are more plentiful. The results of the comparison experiments prove that the proposed method is superior to other algorithms both quantitively and qualitatively. The ablation experiments further demonstrate the effectiveness of the network modules and the illumination aware.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-16
  • 最后修改日期:2022-12-22
  • 录用日期:2022-12-25
  • 在线发布日期:
  • 出版日期:
文章二维码