基于水下滑翔机观测的台风“天鸽”过境 海洋响应研究
作者:
作者单位:

1.天津大学机械工程学院理论与装备设计教育部重点实验室;2.自然资源部第二海洋研究所 卫星海洋环境动力学国家重点实验室

基金项目:

国家重点研发计划项目;国家自然科学基金“超长航程水下滑翔机仿生表面功能特性实验研究”(11902219);天津市自然科学基金“水下滑翔机设计理论与方法”(18JCJQJC46400)和“鳌山人才”培养计划(2017ASTCP-OE01);南方海洋科学与工程广东省实验室(珠海)创新团队建设项目(311021001)。


Study on Ocean Response of Typhoon Hato Based on Underwater Glider Observation
Author:
Affiliation:

1.Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin;2.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources;3.Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | | | |
  • 文章评论
    摘要:

    水下滑翔机作为一种新型移动观测平台,可以对热带气旋过境期间引发的海洋响应进行全方位的观测,利用获取的观测数据能够进一步增强台风预报的准确性。文章从水下滑翔机相较于其他热带气旋观测方式的优势展开,基于“海燕”系列水下滑翔机观测到的台风“天鸽”(Hato)引起的海洋温盐异常历史数据,并结合同期卫星的观测数据和JMA(Japan Meteorology Agency)最佳台风路径数据库,分析研究水平和垂直方向上的海洋温盐异常响应。本文工作验证了4台“海燕-II”水下滑翔机具有对2017年台风“天鸽”引起的海洋响应进行精细化剖面观测的能力,可以完整捕捉台风过境引起的垂直混合现象以及降雨对其观测区域内盐度变化的影响,并分析水下滑翔机观测数据得出台风期间海洋响应的程度与其距离台风的位置有关,即台风期间水下滑翔机观测海域与台风路径距离越近,其温盐异常变化越明显,并且台风路径右侧海域相较于路径左侧海域的温度异常幅度更大。

    Abstract:

    Underwater glider, a new mobile observation platform, can observe the ocean’s response during tropical cyclones in considerable detail, and by employing the observation data, the accuracy of typhoon forecasts can be significantly improved. This paper starts with the advantages of underwater gliders compared with other tropical cyclone observation methods, based on the observation of historical data of temperature and salt anomaly of “Petrel-II” underwater gliders for Typhoon Hato, combined with the observation data of satellites and JMA (Japan Meteorology Agency)database in the same period, the temperature and salt anomaly response in horizontal and vertical directions are analyzed. It has been confirmed that four “Petrel-II” underwater gliders made fine profile observations on the ocean response caused by Typhoon Hato in 2017, which can effectively capture the vertical mixing phenomenon during the typhoon and the influence of rainfall on salinity in the observation area, and the ocean response degree during the typhoon is related to the location of the typhoon. That is, the closer the ocean is to the typhoon path during the typhoon, the more obvious the temperature and salt anomaly is, and the magnitude of temperature anomalies is greater on the right side of the typhoon path compared to the left side of the path.

    参考文献
    [1] 胡天慧,余晖,鲁小琴.基于卫星遥感的热带气旋定强技术综述[J].热带气象学报,2022,38(02):311-320.
    [2] 杨绍琼,成丹,陈光耀,罗辰奕,牛文栋,马伟,法帅.面向典型海洋现象观测的水下滑翔机应用综述[J].热带海洋学报,2022,41(03):54-74.
    [3] 成丹. 面向热带气旋现象的水下滑翔机观测技术研究[D].天津大学,2022.
    [4] 唐飞,陈凤娇,诸葛小勇,吴福浪,宇路,姚彬.利用卫星遥感资料分析台风“烟花”(202106)的影响过程[J].大气科学学报,2021,44(05):703-716.
    [5] Sun D, Kafatos M, Cervone G, et al. Satellite microwave detected SST anomalies and hurricane intensification[J].Natural Hazards,2007,43(2): 273-284.
    [6] 杨志国,姜莹,刘保华,等.波浪滑翔器声学应用分析[J]. 声学技术,2021,40(2):174-180.
    [7] Tian D, Zhang H, Zhang W, et al. Wave glider observations of surface waves during three tropical cyclones in the South China Sea[J]. Water, 2020, 12(5): 1331.
    [8] 贺亚楠, 朱洪海. 海温观测方法发展综述[J]. 气象水文海洋仪器, 2021.
    [9] Zhang H. Modulation of Upper Ocean Vertical Temperature Structure and Heat Content by a Fast-Moving Tropical Cyclone[J]. Journal of Physical Oceanography, 2022.
    [10] 曹晓钟, 李肖霞, 雷勇,等. 国产海洋气象漂流观测仪在台风观测中的应用分析[J]. 气象, 2019, 45(10):7.
    [11] 李民,刘世萱,王波,陈世哲,齐尔麦,汪东平.海洋环境定点平台观测技术概述及发展态势分析[J].海洋技术学报,2015,34(03):36-42.
    [12] Zhang H, Xie X, Yang C, et al. Observed Impact of Typhoon Mangkhut (2018) on a Continental Slope in the South China Sea[J]. Journal of Geophysical Research: Oceans, e2022JC018432.
    [13] Guan S, Zhao W, Sun L, et al. Tropical cyclone-induced sea surface cooling over the Yellow Sea and Bohai Sea in the 2019 Pacific typhoon season[J]. Journal of Marine Systems, 2021, 217: 103509.
    [14] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.
    [15] Domingues R, Goni G, Bringas F, et al. Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations[J]. Geophysical Research Letters, 2015, 42(17): 7131-7138.
    [16] 周磊, 陈大可, 雷小途, 等. 海洋与台风相互作用研究进展[J]. 科学通报, 2019, 64(1): 60-72.
    [17] 李淑凤. 面向中尺度涡三维结构观测的水下滑翔机组网策略研究[D]. 天津大学, 2020.
    [18] 秦思思,张启龙,尹宝树. 西太平洋暖池热盐结构温度场的时空变化[J]. 海洋通报, 2017, 36(1): 27-36.
    [19] 杨晓霞,唐丹玲.台风引起南海海表面降温的位置变化特征[J].热带海洋学报,2010,29(04):26-31.
    [20] Hsu P C, Ho C R. Typhoon-induced ocean subsurface variations from glider data in the Kuroshio region adjacent to Taiwan[J]. Journal of oceanography, 2019, 75(1): 1-21.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:90
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-12-04
  • 最后修改日期:2023-01-19
  • 录用日期:2023-02-03
文章二维码