基于改进生成式对抗网络的水下图像增强
DOI:
CSTR:
作者:
作者单位:

青岛大学计算机科学技术学院

作者简介:

通讯作者:

中图分类号:

基金项目:

中国博士后科学基金,国家自然科学基金项目


Underwater Image Enhancement Based on Improved Generative Adversarial Networks
Author:
Affiliation:

1.College of Computer Science &2.amp;3.Technology, Qingdao University

Fund Project:

China Postdoctoral Science Foundation,National Natural Science Foundation of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于水介质的吸收和散射特性会导致雾化、低对比度、颜色退化等各种水下成像失真,严重影响了水下图像的后续利用。为恢复清晰的水下图像,提出一种基于改进生成对抗网络的深度学习模型。借助图像质量评价技术,将生成的过程样本与高质量样本进行拟合,并将拟合得到的差值信息用于优化网络中的生成器。改进的生成式对抗网络有效改善了由真假训练逻辑带来的图像质量提升限制的问题。实验结果显示,该方法有效的恢复了水下图像的色彩,并改善了图像的清晰度和对比度;相比其他方法,提出的方法在SSIM、UCIQE和UIQM指标上分别提升了2.9%、6.2%和14.3%。

    Abstract:

    Due to absorption and scattering in the underwater environment, underwater images often suffer from fogging, low contrast and color degradation, which seriously affect the subsequent tasks. To obtain clear underwater images, an improved GAN-based deep learning method is proposed for underwater image enhancement. By employing the image quality assessment technique, the fitting information of generated intermediated samples and high-quality samples is applied to optimize the generator of the proposed network, which improves the limitation of the true-or-false training strategy. The experimental results show that the proposed method can effectively improve the clarity and contrast, and restore the color of the underwater images. In addition, comparing with several state-of-the-art methods, our proposed methods achieve increase of 2.9%, 6.2% and 14.3% in terms of SSIM, UCIQE and UIQM indexes, respectively.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-29
  • 最后修改日期:2022-12-18
  • 录用日期:2022-12-25
  • 在线发布日期:
  • 出版日期:
文章二维码