水下图像目标检测研究综述
DOI:
CSTR:
作者:
作者单位:

山东交通学院 船舶与港口工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:


A Review of Underwater Image Target Detection Research
Author:
Affiliation:

College of Shipping and Port Engineering,Shandong Jiaotong University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在海洋开发的环境下,水下物体探测技术得到广泛应用,随着水下机器人与计算机技术的发展,该技术越来越受到研究人员的重视。根据当前的水下图像目标检测研究进展,简要介绍水下图像目标检测流程(即图像采集,图像的预处理,以及图像检测的方法),对总结发展现状、发现技术的不足及挖掘未来的研究方向有重要意义。针对基于光学图像的水下目标识别问题,论述了图像采集,图像的预处理,以及图像检测等方面的主要进展,阐述了基于深度学习实现水下图像目标识别的技术发展现状。通过对水下目标处理过程的讨论和分析,指出水下图像目标识别领域中需要解决的问题,并预测该领域技术发展趋势。

    Abstract:

    In the environment of marine exploitation, underwater object detection technology is widely used, and with the development of underwater robotics and computer technology, this technology is receiving more and more attention from researchers. According to the current research progress of underwater image target detection, a brief introduction of the underwater image target detection process (i.e., image acquisition, image preprocessing, and image detection methods) is important to summarize the current development status, discover the shortcomings of the technology, and explore future research directions. The main advances in image acquisition, image pre-processing, and image detection are discussed for the problem of underwater target recognition based on optical images, and the current state of development of technology based on deep learning for underwater image target recognition is described. By discussing and analyzing the process of underwater target processing, we point out the problems that need to be solved in the field of underwater image target recognition and predict the technical development trend in this field.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-22
  • 最后修改日期:2022-12-20
  • 录用日期:2023-01-03
  • 在线发布日期:
  • 出版日期:
文章二维码