多特征联合水声通信信号调制识别方法
DOI:
作者:
作者单位:

1.昆明船舶设备研究试验中心;2.哈尔滨工程大学水声工程学院;3.中国船舶集团系统工程研究院

作者简介:

通讯作者:

中图分类号:

基金项目:


Modulation Recognition Method of Underwater Acoustic Communication Signal Based on Multi Feature Combination
Author:
Affiliation:

1.Kunming Shipborne Equipment Research and Test Center;2.College of Underwater Acoustic Engineering,Harbin Engineering University;3.China Shipbuilding Industry System Engineering Research Institute

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决水声信道下通信信号识别困难的问题,对水声CW、LFM、2FSK、4FSK、BPSK、QPSK、DSSS-BPSK和OFDM信号的调制识别技术进行了研究,旨在提出一种适用于这八种信号的调制识别方法。通过对信号的时频特征、二次方谱特征及自相关特征进行分析,并利用基于迁移学习的ResNet网络和线性支持向量机进行分类,最终得到了一种多特征联合水声通信信号调制识别方法。仿真表明,在千岛湖多径信道下,信噪比大于9dB时,所研究八种信号的识别率均在99%以上,最后,本文通过海试进一步验证了该方法的可行性,海试数据识别率均在93%以上。仿真及海试验证的结果表明,本文所提的方法是适用于水声信道的。

    Abstract:

    In order to solve the problem of communication signal recognition in underwater acoustic channel, the modulation recognition technology of underwater acoustic CW, LFM, 2FSK, 4FSK, BPSK, QPSK, DSSS-BPSK and OFDM signals is studied, aiming to propose a modulation recognition method suitable for these eight signals. By analyzing time-frequency characteristics, quadratic spectrum characteristics and autocorrelation characteristics of signals, and using ResNet network based on migration learning and linear support vector machine for classification, a multi feature joint underwater acoustic communication signal modulation recognition method is finally obtained. The simulation shows that when the SNR is greater than 9dB in the Qiandao Lake multipath channel, the recognition rate of the eight signals studied is above 99%. Finally, the feasibility of this method is further verified through sea trial, and the recognition rate of sea trial data is above 93%. The simulation and sea trial results show that the proposed method is suitable for underwater acoustic channels.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-05
  • 最后修改日期:2022-09-30
  • 录用日期:2022-10-10
  • 在线发布日期:
  • 出版日期: