基于RBF-MPC的水下机器人避碰控制
作者:
作者单位:

1.海军装备部驻武汉地区军事代表局;2.海军装备部驻广州地区军事代表局

基金项目:

***项目“项目名称”(项目编号)。


Collision avoidance control of underwater vehicle based on RBF-MPC
Affiliation:

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • | | | |
  • 文章评论
    摘要:

    水下机器人避碰控制是自主作业的重要基础,但复杂的约束条件和模型的不精确性增加了避障路径跟踪的技术难度。本文在传统模型预测控制的基础上,结合作业场景多种约束条件,引入径向基函数神经网络,提出了一种水平面避碰控制方法。首先,采用径向基神经网络建立误差补偿函数,提高传统动力学预测模型精度。然后,结合避碰路径跟踪控制,在滚动优化环节选取性能指标函数,并显式引入障碍物、执行机构与控制稳定性等约束条件。最后,通过仿真试验证明该方法能够控制水下机器人跟踪避碰路径实现水平面内障碍物规避。

    Abstract:

    avoidance of underwater vehicles is an important basis for autonomous operation, but complicated constraints and imprecision of models increase the technical difficulty of path tracking in avoidance. Based on the traditional model predictive control, this paper proposes a horizontal plane collision avoidance control method, combining with many constraints of operation scene and introducing radial basis function neural network. Firstly, radial basis neural network is used to establish error compensation function to improve the accuracy of traditional dynamic model. Then, combined with the collision avoidance, the performance index function is selected in the rolling optimization stage, and the constraints such as obstacles, actuator and control stability are explicitly introduced. Finally, the simulation results show that the proposed method can control the underwater vehicle to track the path of collision avoidance in the horizontal plane.

    参考文献
    [1] Teague J, Allen M J, Scott T B. The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring[J]. Ocean Engineering, 2018, 147: 333-339.
    [2] Long C, Qin X, Bian Y, et al. Trajectory tracking control of an ROV using model predictive control considering external disturbances[C]//2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI). IEEE, 2021: 1-5.
    [3] Zhou H, Cao J, Yao B, et al. Hierarchical NMPC–ISMCof active heave motion compensation system for TMS–ROV recovery[J]. Ocean Engineering, 2021, 239: 109834
    [4] Liu M, Guo S, Shi L, et al. Trajectory Tracking Control of an Amphibious Spherical Robot Using MPC Aproach[C]//2021 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2021: 639-644.
    [5] Fossen T I. Handbook of marine craft hydrodynamics and motion control[M]. John Wiley Sons, 2011.
    [6] Javadi-Moghaddam J, Bagheri A. An adaptive neuro-fuzzy sliding mode based genetic algorithm control sytem for under water remotely operated vehicle[J]. Expert Systems with Applications, 2010, 37(1): 647-660.
    [7] García-Valdovinos L G, Fonseca-Navarro F, Aizpuru-Zinkunegi J, et al. Neuro-Sliding Control for Underwater ROV’s Subject to Unknown Disturbances[J]. Sensors, 2019, 19(13): 2943.
    [8] 王香,张永林.基于RBF神经网络的AUV路径跟踪分数阶滑模控制[J].水下无人系统学报,2020,28(03):284-290.
    [9] Chen W, Hu S, Wei Q. Design of ROV Adaptive Sliding Mode Control System for Underwater Vehicle Based on RBF Neural Network[C]//2021 33rd Chinese Control and Decision Conference (CCDC). IEEE, 2021: 2976-2981.
    [10] Yan Z, Gong P, Zhang W, et al. Model predictive control of autonomous underwater vehicles for trajectory tracking with external disturbances[J]. Ocean Engineering, 2020, 217: 107884.
    [11] Yao F, Yang C, Zhang M, et al. Optimization of the en-ergy consumption of depth tracking control based on model predictive control for autonomous underwater veh-icles[J]. Sensors, 2019, 19(1): 162.
    [12] Shen C, Shi Y, Buckham B. Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control[J]. IEEE Transactions on Industrial Electronics, 2017, 65(7): 5796-5805.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:49
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-08-09
  • 最后修改日期:2022-09-08
  • 录用日期:2022-09-20
文章二维码