基于深度学习的水面无人艇目标检测算法综述
CSTR:
作者:
作者单位:

作者简介:

罗逸豪(1995-),男,博士,主要从事深度学习、计算机视觉方向研究

通讯作者:

中图分类号:

TP391.4

基金项目:


Review on Object Detection Algorithm for Unmanned Surface Vehicle Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着人工智能的发展,水面无人艇可代替人工进行危险任务作业,目标检测是其完成自主探测的核心技术。深度学习技术克服了人工特征提取精度低、通用性差等局限性,已成为图像处理的主流方法。 首先,对当前基于深度学习的目标检测算法的发展现状进行了全面总结,对算法分类进行了详细的定义,并指出了不同类型算法的优缺点及适用场景;然后,分析了无人艇水面目标检测技术的研究现状,指出了各类深度学习工作的贡献、优势和局限性;最后,总结了面向水面无人艇的深度学习目标检测算法中亟需解决的关键科学问题,并对可行的方案以及该应用研究领域的未来发展做了进一步的展望。

    Abstract:

    With the development of artificial intelligence,the unmanned surface vehicles can replace manual operations for dangerous tasks,and object detection is the core technology for autonomous detection. The deep learning technology could overcome the limitations of low accuracy and poor versatility of manual features,and has become the mainstream method of image processing. Firstly,this paper has comprehensively summarized the current development status of deep learning-based object detection algorithms,defined the classification of algorithms in detail,and pointed out the advantages,disadvantages and applicable scenarios of different types of algorithms. Then, the research status of unmanned surface vehicle object detection technology is analyzed,and the contributions, advantages and limitations of various types of deep learning are pointed out. Finally,the key scientific problems that need to be solved urgently in deep learning object detection algorithm for unmanned surface vehicle are summarized. Meanwhile,the feasible solutions and the future development of this application research field are further prospected.

    参考文献
    相似文献
    引证文献
引用本文

罗逸豪,孙创,邵成,等.基于深度学习的水面无人艇目标检测算法综述[J].数字海洋与水下攻防,2022,5(6):524-538

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-01-03
  • 出版日期:
文章二维码