OTFS水声通信技术研究现状与展望
作者:
  • 林静怡

    林静怡

    哈尔滨工程大学 水声技术重点实验室,黑龙江 哈尔滨 150001 ;海洋信息获取与安全工信部重点实验室(哈尔滨工程大学)工业和信息化部,黑龙江 哈尔滨 150001 ;哈尔滨工程大学 水声工程学院,黑龙江 哈尔滨 150001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 孙宗鑫

    孙宗鑫

    哈尔滨工程大学 水声技术重点实验室,黑龙江 哈尔滨 150001 ;海洋信息获取与安全工信部重点实验室(哈尔滨工程大学)工业和信息化部,黑龙江 哈尔滨 150001 ;哈尔滨工程大学 水声工程学院,黑龙江 哈尔滨 150001
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘宇飞

    刘宇飞

    哈尔滨工程大学 水声技术重点实验室,黑龙江 哈尔滨 150001 ;海洋信息获取与安全工信部重点实验室(哈尔滨工程大学)工业和信息化部,黑龙江 哈尔滨 150001 ;哈尔滨工程大学 水声工程学院,黑龙江 哈尔滨 150001
    在期刊界中查找
    在百度中查找
    在本站中查找
作者简介:

林静怡(1995-),女,硕士生,主要从事多载波水声通信方向的研究

中图分类号:

TN929.3

基金项目:

国家自然基金项目“面向复杂海洋环境的水下装备间高速可靠数据传输关键技术”(No. U1806201);水声技术重点实验室基金项目“基于信道估计和跨层协作的高效水声通信网络技术研究”(No. 6142109180305);国防科工局稳定支持基金项目“低功耗水声通信与组网技术研究与样机研制“(JCKYS2022604SSJS001)


Research Status and Prospect of OTFS Underwater Acoustic Communication Technology
Author:
  • LIN Jingyi

    LIN Jingyi

    Acoustic Science and Technology Laboratory,Harbin Engineering University,Harbin 150001 ,China ;Ministryof Industry and Information Technology,Key Laboratory of Marine Information Acquisition and Security(HarbinEngineering University),Harbin 150001 ,China ;College of Underwater Acoustic Engineering,HarbinEngineering University,Harbin 15000,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SUN Zongxin

    SUN Zongxin

    Acoustic Science and Technology Laboratory,Harbin Engineering University,Harbin 150001 ,China ;Ministryof Industry and Information Technology,Key Laboratory of Marine Information Acquisition and Security(HarbinEngineering University),Harbin 150001 ,China ;College of Underwater Acoustic Engineering,HarbinEngineering University,Harbin 15000,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Yufei

    LIU Yufei

    Acoustic Science and Technology Laboratory,Harbin Engineering University,Harbin 150001 ,China ;Ministryof Industry and Information Technology,Key Laboratory of Marine Information Acquisition and Security(HarbinEngineering University),Harbin 150001 ,China ;College of Underwater Acoustic Engineering,HarbinEngineering University,Harbin 15000,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    正交时频空调制是近年来提出的一种用于高速移动无线通信场景的调制技术,通过将时变多径信道转换到时延–多普勒域,使得所有符号都经历几乎相同且变化缓慢的稀疏信道。与正交频分复用系统相比, 正交时频空技术具有较低的峰均功率比,且能够有效抵抗多普勒效应,在高时延、高多普勒的信道条件下具备性能优势。简要介绍了正交时频空技术的基本原理,以及目前无线电及水声通信领域正交时频空技术研究与应用现状,梳理了正交时频空技术在工程应用中亟待解决的关键问题,如波形设计、信道估计和均衡以及接收机结构设计等。最后对正交时频空技术在水声通信系统中面临的挑战和应用前景进行了分析和展望。

    Abstract:

    Orthogonal time frequency space(OTFS)is a modulation techonoloty proposed for high-speed mobile wireless communication in recent years. It can convert the time-varying multipath channel to the time delay-Doppler (DD)domain,which makes all symbols go through almost the same and slowly changing sparse channel. Compared with the orthogonal frequency division multiplexing(OFDM)system,the OTFS technology has a lower peak to average power ratio,which can effectively resist the Doppler effect and has performance advantages under the channel conditions of high time delay and high Doppler. This paper briefly introduces the basic principle of OTFS technology, as well as the current research and application status in the field of radio and underwater acoustic(UWA) communication. It also sorts out the key problems to be solved in the engineering application of OTFS technology,such as waveform design,channel estimation and equalization,and receiver structure design. Finally,the challenges and application prospects of OTFS technology in UWA communication systems are analyzed and prospected.

    参考文献
    [1] STOJANOVIC M,PREISIG J.Underwater acousticcommunication channels:propagation models andstatistical characterization[J].IEEE CommunicationsMagazine,2009,47(1):84-89.
    [2] WANG C,YIN J W,DU P Y,et al.Application oforthogonal frequency division multiplexing incognitive underwater communication[J].The Journal ofthe Acoustical Society of America,2012,132(3):2015-2015.
    [3] ZHANG Y H,WANG C,YIN J W,et al.Research onmultilevel differential amplitude and phase-shift keyingin convolution-coded orthogonal frequency divisionmultiplexing underwater communication system[J].TheJournal of the Acoustical Society of America,2012,132(3):2015-2015.
    [4] RAVITEJA P,PHAN K T,HONG Y,et al.Interferencecancellation and iterative detection for orthogonal timefrequency space modulation[J].IEEE Transactions onWireless Communications,2018,17(10):6501-6515.
    [5] HADANI R,RAKIB S,TSATSANIS M,et al.Orthogonal time frequency space modulation[C]//IEEEWireless Communications and Networking Conference(WCNC).San Francisco,CA:IEEE,2017.
    [6] FRANCIS J,CHIVURALA P C,KOILPILLAI R D,et al.Performance of OTFS and OCDM schemes inunderwater acoustic communication channels[C]//OCEANS Conference.Chennai:IEEE,2022.
    [7] RAVITEJA P,HONG Y,VITERBO E,et al.Practicalpulse-shaping waveforms for reduced-cyclic-prefixOTFS[J].IEEE Transactions on Vehicular Technology.2018,68(1):957-961.
    [8] RAVITEJA P,PHAN K T,HONG Y,et al.Embeddeddelay-Doppler channel estimation for orthogonal timefrequency space modulation[C]//88th IEEE VehicularTechnology Conference(VTC-Fall).Chicago IL:IEEE,2018.
    [9] SRIVASTAVA S,SINGH R K,JAGANNATHAM A K,et al.Bayesian learning aided sparse channel estimationfor orthogonal time frequency space modulatedsystems[J].IEEE Transactions on Vehicular Technology.2021,70(8):8343-8348.
    [10] WEI Z Q,YUAN W J,LIT S Y,et al.A new off-gridchannel estimation method with sparse Bayesianlearning for OTFS systems[C]//IEEE GlobalCommunications Conference(GLOBECOM).Madrid:IEEE,2021.
    [11] SHEN W Q,DAI L L,AN J P,et al.Channel estimationfor orthogonal time frequency space(OTFS)massiveMIMO[J].IEEE Transactions on Signal Processing,2019,67(16):4204-4217.
    [12] FENG X,ESMAIEL H,WANG J F,et al.Underwateracoustic communications based on OTFS[C]//15th IEEE International Conference on Signal Processing(ICSP).Beijing:IEEE,2020.
    [13] BOCUS M J,DOUFEXI A,AGRAFIOTIS D.Performance of OFDM-based massive MIMO OTFSsystems for underwater acoustic communication[J].IETCommunications,2020,14(4):588-593.
    [14] JING L Y,ZHANG N M,HE C B,et al.OTFSunderwater acoustic communications based on passivetime reversal[J].Applied Acoustics,2022,185:108386.
    [15] WEI Z Q,YUAN W J,LI S Y,et al.Orthogonaltime-frequency space modulation:a promisingnext-generation waveform[J].IEEE WirelessCommunications,2021,28(4):136-144.
    [16] TIWARI S,DAS S S.Circularly pulse-shapedorthogonal time frequency space modulation[J].Electronics Letters,2020,56(3):157-159.
    [17] HOSSAIN M N,SUGIURA Y,SHIMAMURA T,et al.Waveform design of low complexity WR-OTFS systemfor the OOB power reduction[C]//IEEE WirelessCommunications and Networking Conference(IEEEWCNC).Seoul:IEEE,2020.
    [18] WEI Z Q,YUAN W J,LI S Y,et al.Transmitter andreceiver window designs for orthogonal time-frequencyspace modulation[J].IEEE Transactions onCommunications,2021,69(4):2207-2223.
    [19] RAMACHANDRAN M K,CHOCKALINGAM A.MIMO-OTFS in high-Doppler fading channels:signaldetection and channel estimation[C]//IEEE GlobalConference on Communications(GLOBECOM).AbuDhabi:IEEE,2018.
    [20] MURALI K R,CHOCKALINGAM A.On OTFSmodulation for high-Doppler fading channels[C]//Information Theory and Applications Workshop(ITA).San Diego,CA:IEEE,2018.
    [21] HASHIMOTO N,OSAWA N,YAMAZAKI K,et al.Channel estimation and equalization forCP-OFDM-based OTFS in fractional Dopplerchannels[C]//2021 IEEE International Conference onCommunications Workshops(ICC Workshops).Montreal,QC:IEEE,2021.
    [22] LIU Y S,ZHANG S,GAO F F,et al.Uplink-aided highmobility downlink channel estimation over massiveMIMO-OTFS system[J].IEEE Journal on SelectedAreas in Communications,2020,38(9):1994-2009.
    [23] LI B S,ZHOU S L,STOJANOVIC M,et al.Non-uniform Doppler compensation for zero-paddedOFDM over fast-varying underwater acousticchannels[C]//Oceans 2007 Europe InternationalConference.Aberdeen:IEEE,2007.
    [24] MASON S,BERGER C,ZHOU S L,et al.An OFDMdesign for underwater acoustic channels with Dopplerspread[C]//13th IEEE Digital Signal ProcessingWorkshop/5th IEEE Signal Processing EducationWorkshop.Marco Island,FL:IEEE,2009.
    [25] BERGER C R,GOMES J,MOURA J M F,et al.Studyof pilot designs for cyclic-prefix OFDM on time-varyingand sparse underwater acoustic channels[C]//IEEEOCEANS Conference.Santander:IEEE,2011.
    [26] CHEN Z R,ZHENG Y R,WANG J T,et al.Synchronization and Doppler scale estimation with dualPN padding TDS-OFDM for underwater acousticcommunication[C]//MTS/IEEE Oceans Conference.San Diego,CA:IEEE,2013.
    [27] PELEKANAKIS C,STOJANOVIC M,FREITAG L.High rate acoustic link for underwater videotransmission[C]//Oceans 2003.Celebrating the Past...Teaming Toward the Future(IEEE Cat.No.03CH37492).San Diego,CA:IEEE,2003.
    [28] LI L J,LIANG Y,FAN P Z,et al.Low complexitydetection algorithms for OTFS under rapidly time-varyingchannel[C]//89th IEEE Vehicular Technology Conference(VTC Spring).Kuala Lumpur:IEEE,2019.
    [29] THAJ T,VITERBO E.Low complexity iterative rakedetector for orthogonal time frequency spacemodulation[C]//IEEE Wireless Communications andNetworking Conference(IEEE WCNC).Seoul:IEEE,2020.
    [30] YUAN W J,WEI Z Q,YUAN J H,et al.A simplevariational Bayes detector for orthogonal timefrequency space(OTFS)modulation[J].IEEETransactions on Vehicular Technology,2020,69(7):7976-7980.
    [31] SURABHI G D,CHOCKALINGAM A.Low-complexitylinear equalization for OTFS modulation[J].IEEECommunications Letters,2019,24(2):330-334.
    [32] YANG T C,HUANG S H.Building a database of oceanchannel impulse responses for underwater acousticcommunication performance evaluation:issues,requirements,methods and results[C]//Proceedings ofthe 11th ACM International Conference on UnderwaterNetworks & Systems.Shanghai:ACM,2016.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林静怡,孙宗鑫,刘宇飞. OTFS水声通信技术研究现状与展望[J].数字海洋与水下攻防,2022,5(6):502-509

复制
分享
文章指标
  • 点击次数:275
  • 下载次数: 1041
  • HTML阅读次数: 625
  • 引用次数: 0
历史
  • 在线发布日期: 2023-01-03
文章二维码