基于残余自干扰获取的带内全双工水声通信系统结构方案与仿真
作者:
作者单位:

中国船舶集团有限公司第七一O研究所 宜昌 443003


In-Band Full-Duplex Underwater Acoustic Communication System Structure Scheme and Simulation Based on Residual Self-Interference Acquisition
Author:
Affiliation:

1.No.710 R&2.D Institute,CSSC

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • | | | |
  • 文章评论
    摘要:

    强自干扰抵消是带内全双工(In-Band Full-Duplex, IBFD)水声通信系统工程实现中的最大挑战。近端接收端需结合模拟域及数字域进行联合干扰抵消才可将干扰强度降低至可接受水平。本文提出一种基于残余干扰获取的带内全双工水声通信系统结构设计方案,其特征为具备主、辅双采集链路,通过辅助采集链路实现对干扰信号的获取,并利用辅助采集链路与消干扰信号在数字域上的抵消结果作为主采集链路数字域上的线性滤波器的输入参考信号,以实现对残余干扰的抵消。该系统结构方案与现有系统结构方案相比,在有效克服功率放大器非线性影响的同时,可降低模拟域及数字域干扰抵消系统结构复杂度;仿真数据处理结果表明,该方案可实现公里级带内全双工水声通信。

    Abstract:

    The cancellation of strong self-interference is the biggest challenge in engineering implementation of In-band Full-duplex (IBFD) UnderWater Acoustic(UWA) communication system. The near receiving end needs to combine the analog domain and the digital domain to conduct joint interference cancellation to reduce the interference intensity to an acceptable level. This paper proposes an IBFD-UWA communication system structure design scheme based on residual interference acquisition, which is characterized by having primary and secondary acquisition links. The acquisition of interference signals is realized through the auxiliary acquisition link, and the cancellation result of the auxiliary acquisition link and the interference cancellation signal in the digital domain is used as the input reference signal of the linear filter in the digital domain of the main acquisition link to realize the cancellation of residual interference. Compared with the existing system structure scheme, this system structure scheme can effectively overcome the nonlinear influence of the power amplifier and reduce the structural complexity of the interference cancellation system in the analog domain and the digital domain. The simulation results show that the scheme can realize the kilometer level IBFD-UWA communication.

    参考文献
    [1] KOLODZIEJ K E, PERRY B T and HERD J S. In-Band Full-Duplex Technology: Techniques and Systems Survey[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(7): 3025-3041.doi: 10.1109/TMTT.2019.2896561.
    [2] QU Fengzhong, YANG Hong, et al. In-band full-duplex communications for underwater acoustic networks[J]. IEEE Network, 2017, 31(5): 59-65. doi: 10.1109/MNET.2017.60 267.
    [3] LIU Gang, YU F R, JI Hong, et al. In-Band Full-Duplex Relaying: A Survey, Research Issues and Challenges[J]. IEEE Communications Surveys Tutorials, 2017, 17(2): 500-524.doi: 10.1109/COMST.2015.2394324.
    [4] HANEDA K, KAHRA E, WYNE S, et al. Measurement of loop-back interference channels for outdoor-to-indoor full-duplex radio relays [C]. Proceedings of the Fourth European Conference on Antennas and Propagation IEEE, Barcelona, Spain, 2010: 1–5.
    [5] EVERETT E, SAHAI A, and SABHARWAL A. Passive self-interference suppression for full-duplex infrastructure nodes[J]. IEEE Transactions on Wireless Communications, 2014, 13(2): 680–694. doi: 10.1109/TWC.2013.010214.130 26.
    [6] MAKAR G, TRAN N, and KARACOLAK T. A high-isolation monopole array with ring hybrid feeding structure for in-band full-duplex systems[J]. IEEE Antennas Wireless Propagation Letters, 2017, 16: 356–359. doi: 10.1109/LAW P.2016.2577003.
    [7] HEALY C T, JEBUR B A, TSIMENIDIS C C, et al. Experimental Measurements and Analysis of In-Band Full-Duplex Interference for Underwater Acoustic Communication Systems [C]. MTS/IEEE OCEANS 2019, Marseille, France, 2019: 1-5. doi: 10.1109/OCEANSE.2019.8867454.
    [8] TOWLIAT M, GUO Zheng, CIMINI L J, et al. Self-interference channel characterization in underwater acoustic in-band full-duplex communications using OFDM [C]. IEEE Global Oceans 2020: Singapore – U.S. Gulf Coast, Biloxi, USA, 2020: 1-7.doi: 10.1109/IEEECONF38699.2020.93 89027.
    [9] SMITH K B, LARRAZA A, and KAYALI B. Scale model analysis of full-duplex communications in an underwater acoustic channel [C]. MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings, Honolulu, USA, 2001: 2250-2255. doi: 10.1109/oceans.2001. 968348.
    [10] QIAO Gang, ZHAO Yunjiang, et al. The effect of acoustic-shell coupling on near-end self-interference signal of in-band full-duplex underwater acoustic communication modem [C]. 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2020: 606-610. doi: 10.1109/IBCAST47879.2020.044520.
    [11] ZHAO Yunjiang, QIAO Gang, et al. Self-interference channel modeling for in-band full-duplex underwater acoustic modem[J]. Applied Acoustics, 2021, 175: 107687.doi: 10.1016/j.apacoust.2020.107687.
    [12] RADUNOVIC B, GUNAWARDENA D, KEY P, et al. Rethinking indoor wireless mesh design: Low power, low frequency, full-duplex [C]. 2010 Fifth IEEE Workshop on Wireless Mesh Networks, Boston, USA, 2010: 1–6. doi: 10.1109/WIMESH.2010.5507905.
    [13] HONG S, BRAND J, CHOI J I, et al. Applications of self-interference cancellation in 5G and beyond[J]. IEEE Communications Magazine, 2014, 52(2): 114-121.doi: 10.1109/MCOM.2014.6736751.
    [14] LIU Ying, QUAN Xin, PAN Wensheng, et al. Digitally assisted analog interference cancellation for in-band full-duplex radios[J]. IEEE Communications Letters, 2017, 21(5): 1079-1082. doi: 10.1109/LCOMM.2017.2652444.
    [15] ADAMS M, BHARGAVA V K. Use of the recursive least squares filter for self interference channel estimation [C]. 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall). Montreal, Canada, 2016: 1-4. doi: 10.1109/VTCF all.2016.7881958.
    [16] QIAO Gang, GAN Shuwei, et al. Self-interference channel estimation algorithm based on maximum-likelihood estimator in in-band full-duplex underwater acoustic communication system[J]. IEEE Access, 2019, 6: 62324-62334. doi: 10.1109/ACCESS.2018.2875916.
    [17] SHEN Lu, HENSON B, ZAKHAROV Y, et al. Digital Self-Interference Cancellation for Full-Duplex Underwater Acoustic Systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(1): 192-196. doi: 10.1109/TCSII.2019.2904391.
    [18] NAWAZ H, TEKIN I. Three dual polarized 2.4 GHz microstrip patch antennas for active antenna and in-band full duplex applications [C]. IEEE 2016 16th Mediterranean Microwave Symposium (MMS), Abu Dhabi, United Arab Emirates, 2016: 1–4.doi: 10.1109/MMS.2016.7803854.
    [19] STOJANOVIC M. OFDM for underwater acoustic communications: Adaptive synchronization and sparse channel estimation [C]. 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008: 5288-5291. doi: 10.1109/ICASSP.2008.4518853.
    [20] COTTER SF, RAO BD. Sparse channel estimation via matching pursuit with application to Equalization[J]. IEEE Transactions on Communications, 2002, 50(3): 374-377.doi: 10.1109/26.990897.
    [21] LI Li, SONG Aijun, CIMINI L J, et al. Interference cancellation in in-band full-duplex underwater acoustic systems [C]. IEEE OCEANS 2015-MTS/IEEE Washington, Washington, USA 2015: 1-6. doi: 10.23919/OCEANS. 2015.7404411.
    [22] GREGORIO F H, GONZALEZ G J, COUSSEAU J, et al. Predistortion for power amplifier linearization in full-duplex transceivers without extra RF chain [C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, 2017: 6563-6567. doi: 10.1109/ICASSP.2017.7953421.
    [23] BHARADIA D, MCMILIN E, et al. Full Duplex Radios[J]. ACM SIGCOMM Computer communication review, 2013, 43(4), pp: 375-386. doi: 10.1145/2534169. 2486033.
    [24] ZHAO Yunjiang, QIAO Gang, et al. Digitally Assisted Analog Self-interference Cancellation for In-band Full-duplex Underwater Acoustic Communication [C]. IEEE 2021 OES China Ocean Acoustics (COA), 2021: 613-618. doi: 10.1109/COA50123.2021.9520056.
    [25] STOJANOVIC M, PREISIG J. Underwater acoustic communication channels: Propagation models and statistical characterization[J]. IEEE communications magazine, 2009, 47(1): 84-89. doi: 10.1109/MCOM.2009.4752682.
    [26] COATES R. Underwater Acoustic Systems [M], NewYork: Wiley, 1989.
    [27] CRESPO-CADENAS C, REINA-TOSINA J, MADERO-AYORA M J, et al. A new approach to pruning volterra models for power amplifiers[J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2113–2120. doi: 10.1109/TS P.2009.2039815.
    [28] DING L, ZHOU G T, MORGAN D R, et al. A robust digital baseband pre-distorter constructed using memory polynomials[J]. IEEE Transactions on Communications, 2004, 52(1): 159–165. doi: 10.1109/TCOMM.2003.822188.
    [29] KORPI D, RIIHONEN T, SYRJALA V, et al. Full-Duplex Transceiver System Calculations: Analysis of ADC and Linearity Challenges[J]. IEEE Transactions on Wireless Communications, 2014, 13(7): 3821-3836. doi: 10.1109/TWC. 2014.2315213.
    [30] DUARTE M, SABHARWAL A. Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results [C]. IEEE 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2010: 1558-1562. doi: 10.1109/ACSSC.2010.5757799.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:111
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-04-19
  • 最后修改日期:2022-08-11
  • 录用日期:2022-08-26
文章二维码