基于无监督学习卷积神经网络的声呐图像分割
CSTR:
作者:
作者单位:

作者简介:

淦智权(1993-),男,硕士生,主要从事声呐图像处理研究。

通讯作者:

中图分类号:

TP391

基金项目:

中国船舶集团科技创新与研发项目“海上多平台无人系统自主/协同技术研究”(201808k)


Sonar Images Segmentation Based on Unsupervised Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    声呐图像分割是图像分割技术发展中的组成部分,是水下目标识别与检测的重要一环。传统方法中基于有监督分割方法的算法往往代价较大,表现出试验周期长、实时性较差、运行速率较慢等不足。并且由于声呐图像的成像质量差、分辨率不高、边缘条件不清晰、人工标注工作量大等客观因素,不易建立用于有监督模型训练的大规模数据集,使得传统分割方法越来越不适应当前实际应用的多方面要求。将基于无监督学习卷积神经网络引入到声呐图像分割任务中,分割模型通过对单帧声呐图像进行训练和测试,最后经过推理得到将阴影区和目标高亮区分割后的声呐图像,得到分割出来的水下目标。通过对实验的分割结果进行各项指标分析,证明此方法有着更好的运行效率和分割精度,并且实时性较高,综合性能优于传统方法。

    Abstract:

    Sonar image segmentation is an integral part in the development of image segmentation technology. It is also an important part of underwater target recognition and detection. In traditional methods,the algorithms based on supervised segmentation methods are often expensive,and are characterized with long test periods,poor real-time performance,and low running rates. In addition,due to objective factors such as poor imaging quality,low resolution,unclear edge conditions,and large workload of manual annotation of sonar images,it is difficult to establish large-scale datasets for supervised model training. Therefore,traditional segmentation methods are becoming less and less suitable for various requirements of current practical applications. In this paper,the unsupervised learning convolution neural network (UCNN) is introduced into the sonar image segmentation task. The segmentation model is then trained and tested on a single frame of sonar images. Finally,by inference,a sonar image is obtained after segmenting the shadow area and the target highlight area,and the segmented underwater target is obtain. Through the analysis of various indicators of the segmentation results of the experiment,it is proved that this method has better operation efficiency and segmentation accuracy,as well as higher real-time performance. It also has better comprehensive performance compared with traditional methods.

    参考文献
    相似文献
    引证文献
引用本文

淦智权.基于无监督学习卷积神经网络的声呐图像分割[J].数字海洋与水下攻防,2022,5(4):381-386

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-08-30
  • 出版日期:
文章二维码