基于信号处理的水下无线光通信综述
作者:
作者简介:

陈潇(1996-),男,博士生,主要从事水下无线光通信方面的研究。

中图分类号:

TN929.1

基金项目:

国家自然科学基金“基于多像素光子计数器和二维分集接收的长距离水下激光通信系统研究”(61971378);中国科学院战略性先导科技专项(A 类)“深海定向超高速短距离蓝绿激光通信技术”(XDA22030208);舟山市–浙江大学联合研究项目“高速长距离水下无线光通信技术研究”(2019C81081)


Overview of Underwater Optical Wireless Communication Based on Signal Processing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    水下无线光通信(UOWC)具有高带宽、低时延和抗电磁干扰等优势,成为水下数据传输的重要手段之一。简述了 UOWC 的发展史,总结了基于高性能光电器件和数字信号处理(DSP)2 种方案的高速率长距离和高可靠性 UOWC 系统的研究现状。DSP 中的调制技术能够实现通信速率和传输距离的折衷;信道均衡技术能够消除码间干扰,增大调制带宽;信道编码技术能够纠正接收信号中的错误;分集复用技术则能够分别提高系统可靠性和通信速率。除了研究高性能的光电器件以外,引入 DSP 技术能够从软件层面进一步提高系统性能。

    Abstract:

    Due to the advantages of high bandwidth,low delay,and anti-interference ability,Underwater Optical Wireless Communication(UOWC)has become one of the important ways of underwater data transmission. The development history of UOWC is briefly described,and the research status of high-speed,long-distance and high-reliable UOWC systems based on high-performance optoelectronic devices and Digital Signal Processing (DSP)is summarized. The modulation technology can realize the tradeoff between data rate and transmission distance. Channel equalization technology can eliminate inter-symbol interference and increase the modulation bandwidth. Channel coding technology can correct the errors in the received signals. Diversity and multiplexing technology can improve the reliability and data rate of the system, respectively. In addition to studying high-performance optoelectronic devices,the employment of DSP technology can furtherly improve the system performance at the software level.

    参考文献
    [1] 姜晓轶,符昱,康林冲,等.海洋物联网技术现状与展望[J].海洋信息,2019,34(3):7-11.
    [2] ZENG Z Q,FU S,ZHANG H H,et al.A survey of underwater optical wireless communications[J].IEEE Communications Surveys & Tutorials,2017,19(1):204-238.
    [3] STOJANOVIC M.Recent advances in high-speed underwater acoustic communications[J].IEEE Journal of Oceanic Engineering,1996,21(2):125-136.
    [4] PALMEIRO A,MARTIN M,CROWTHER I,et al.Underwater radio frequency communications[C]//OCEANS 2011 IEEE.Santander:IEEE,2011.
    [5] XU J,KONG M W,LIN A B,et al.Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication[J].Optics Letters,2017,42(9):1664-1667.
    [6] WANG J L,YANG X Q,LV W C,et al.Underwater wireless optical communication based on multi-pixel photon counter and OFDM modulation[J].Optics Communications,2019,451:181-185.
    [7] 陈潇.水下无线光通信中数字信号处理技术研究[D].杭州:浙江大学.2022.
    [8] FASHAM S,DUNN S.Developments in subsea wireless communications[C]//2015 IEEE Underwater Technology(UT).Chennai:IEEE,2015.
    [9] LIU X Y,YI S Y,ZHOU X L,et al.34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J].Optics Express,2017,25(22):27937-27947.
    [10] KONG M W,LV W C,ALI T,et al.10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication[J].Optics Express,2017,25(17):20829-20834.
    [11] WU T C,CHI Y C,WANG H Y,et al.Blue laser diode enables underwater communication at 12.4 Gbps[J].Scientific Reports,2019,7(1):1-10.
    [12] CHEN Y F,KONG M W,ALI T,et al.26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode[J].Optics Express,2017,25(13):14760-14765.
    [13] HU S Q,MI L,ZHOU T H,et al.35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM[J].Optics Express,2018,26(17):21685-21699.
    [14] WANG J M,LU C H,LI S B,et al.100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J].Optics Express,2019,27(9):12171-12181.
    [15] TSAI W S,LU H H,WU H W,et al.A 30 Gb/s PAM4 underwater wireless laser transmission system with optical beam reducer/expander[J].Scientific Reports,2019,9(1):1-8.
    [16] ZHAO M M,LI X,CHEN X,et al.Long-reach underwater wireless optical communication with relaxed link alignment enabled by optical combination and arrayed sensitive receivers[J].Optics Express,2020,28(23):34450-34460.
    [17] OUBEI H M,LI C P,PARK K H,et al.2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode[J].Optics Express,2015,23(16):20743-20748.
    [18] SHEN C,GUO Y J,OUBEI H M,et al.20-meter underwater wireless optical communication link with 1.5 Gbps data rate[J].Optics Express,2016,24(22):25502-25509.
    [19] SHEN J N,WANG J L,CHEN X,et al.Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter[J].Optics Express,2018,26(18):23565-23571.
    [20] KONG M W,CHEN Y F,SARWAR R,et al.Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J].Optics Express,2018,26(3):3087-3097.
    [21] LIANG S Y,JIANG Z H,QIAO L,et al.Faster-thanNyquist precoded CAP modulation visible light communication system based on nonlinear weighted look-up table predistortion[J].IEEE Photonics Journal,2018,10(1):1-9.
    [22] WANG Y G,HUANG X X,TAO L,et al.4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization[J].Optics Express,2015,23(10):13626-13633.
    [23] LU H H,LI C Y,LIN H H,et al.An 8 m/9.6 Gbps underwater wireless optical communication system[J].IEEE Photonics Journal,2016,8(5):1-7.
    [24] HONG X J,FEI C,ZHANG G W,et al.Probabilistically shaped 256-QAM-OFDM transmission in underwater wireless optical communication system[C]//2019 Optical Fiber Communications Conference and Exhibition(OFC).San Diego:IEEE,2019.
    [25] SHAO Y J,DENG R,HE J,et al.Real-time 2.2-Gb/s water-air OFDM-OWC system with low-complexity transmitter-side DSP[J].Journal of Lightwave Technology,2020,38(20):5668-5675.
    [26] JI X Y,YIN H X,XING F Y,et al.Modeling and simulation analysis of UOWC system in consideration of impulse expansion[C]//2019 IEEE International Conference on Signal Processing,Communication and Computing(ICSPCC).Dalian:IEEE,2019.
    [27] ZHANG L,TANG X K,SUN C M,et al.Over 10 attenuation length gigabits per second underwater wireless optical communication using a silicon photomultiplier(SiPM)based receiver[J].Optics Express,2020,28(17):24968-24980.
    [28] CHEN X,LYU W C,ZHANG Z J,et al.56-m/3.31-Gbps underwater wireless optical communication employing Nyquist single carrier frequency domain equalization with noise prediction[J].Optics Express,2020,28(16):23784-23795.
    [29] GAO G J,LI J W,ZHAO L Y,et al.1 Gb/s underwater optical wireless on-off-keying communication with 167 MHz receiver bandwidth[C]//2018 OCEANS-MTS/IEEE Kobe Techno-Oceans(OTO).Kobe:IEEE,2018.
    [30] LU C H,WANG J M,LI S B,et al.60m/2.5 Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization[C]//2019 Conference on Lasers and Electro-Optics(CLEO).San Jose:IEEE,2019.
    [31] FEI C,ZHANG J W,ZHANG G W,et al.Demonstration of 15-m 7.33-Gb/s 450-nm underwater wireless optical discrete multitone transmission using post nonlinear equalization[J].Journal of Lightwave Technology,2018,36(3):728-734.
    [32] DAI Y Z,CHEN X,YANG X Q,et al.200-m/500-Mbps underwater wireless optical communication system utilizing a sparse nonlinear equalizer with a variable step size generalized orthogonal matching pursuit[J].Optics Express,2021,29(20):32228-32243.
    [33] ZHAO Y H,ZOU P,CHI N.3.2 Gbps underwater visible light communication system utilizing dual-branch multi-layer perceptron based post-equalizer[J].Optics Communications,2020,460:125197.
    [34] ZHUANG B Y,LI C,WU N,et al.First demonstration of 400Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer[C]//2017 Conference on Lasers and Electro-Optics(CLEO).San Jose:IEEE,2017.
    [35] OMAR A S.FEC techniques in submarine transmission systems[C]//Optical Fiber Communication Conference and Exhibit.Anaheim:IEEE,2001.
    [36] COX W C,SIMPSON J A,DOMIZIOLI C P,et al.An underwater optical communication system implementing Reed-Solomon channel coding[C]//OCEANS 2008.Quebec:IEEE,2008.
    [37] YU X S,JIN W W,SUI M H.Evaluation of forward error correction scheme for underwater wireless optical communication[C]//2011 Third International Conference on Communications and Mobile Computing.Qingdao:IEEE,2011.
    [38] WANG W P,ZHENG B.The simulation design of LED-based close-range underwater optical communication system[C]//2013 10th International Computer Conference on Wavelet Active Media Technology and Information Processing(ICCWAMTIP).Chengdu:IEEE,2013.
    [39] RAMAVATH P N,KUMAR A,GODKHINDI S S,et al.Experimental studies on the performance of underwater optical communication link with channel coding and interleaving[J].CSI Transactions on ICT,2018,6(1):65-70.
    [40] WANG P L,LI C,XU Z Y.A cost-efficient real-time 25 Mb/s system for LED-UOWC:design,channel coding,FPGA implementation,and characterization[J].Journal of Lightwave Technology,2018,36(13):2627-2637.
    [41] OUBEI H M,ELAFANDY R T,PARK K H,et al.Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations[C]//IEEE Photonics Conference.US:IEEE,2017.
    [42] JAMALI M V,MIRANI A,PARSAY A,et al.Statistical studies of fading in underwater wireless optical channels in the presence of air bubble,temperature,and salinity random variations[J].IEEE Transactions on Communications,2018,66(10):4706-4723.
    [43] VALI Z,GHOLAMI A,GHASSEMLOOY Z,et al.Experimental study of the turbulence effect on underwater optical wireless communications[J].Applied Optics,2018,57(28):8314-8319.
    [44] HAN B,ZHAO W,ZHENG Y Q,et al.Experimental demonstration of quasi-omni-directional transmitter for underwater wireless optical communication based on blue LED array and freeform lens[J].Optics Communications,2019,434:184-190.
    [45] TONG Z J,YANG X Q,CHEN X,et al.Quasiomnidirectional transmitter for underwater wireless optical communication systems using a prismatic array of three high-power blue LED modules[J].Optics Express,2021,29(13):20262-20274.
    [46] LI X,TONG Z J,LYU W C,et al.Underwater quasi-omnidirectional wireless optical communication based on perovskite quantum dots[J].Optics Express,2022,30(2):1709-1722.
    [47] RAZAVI M,SHAPIRO J H.Wireless optical communications via diversity reception and optical preamplification[J].IEEE Transactions on Wireless Communications,2005,4(3):975-983.
    [48] 刘加林,郝士琦,周建国,等.基于LDPC码的分集接收系统性能研究[J].激光与光电子学进展,2013,50(10):67-73.
    [49] LIU W H,XU Z Y,YANG L Q.SIMO detection schemes for underwater optical wireless communication under turbulence[J].Photonics Research,2015,3(3):48-53.
    [50] BOUCOUVALAS A C,PEPPAS K P,YIANNOPOULOS K,et al.Underwater optical wireless communications with optical amplification and spatial diversity[J].IEEE Photonics Technology Letters,2016,28(22):2613-2616.
    [51] SONG Y H,LU W C,SUN B,et al.Experimental demonstration of MIMO-OFDM underwater wireless optical communication[J].Optics Communications,2017,403:205-210.
    [52] WANG F M,LIU Y F,JIANG F Y,et al.High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception[J].Optics Communications,2018,425:106-112.
    [53] CHEN L K,SHAO Y J,DENG R.Robust UOWC systems against bubble-induced impairments via transmit/receive diversities[J].Chinese Optics Letters,2019,17(10):100006.
    [54] CHEN X,DAI Y Z,TONG Z J,et al.Demonstration of a 2×2 MIMO-UWOC system with large spot against air bubbles[J].Applied Optics,2022,61(1):41-48.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈潇,徐敬.基于信号处理的水下无线光通信综述[J].数字海洋与水下攻防,2022,5(4):313-321

复制
分享
文章指标
  • 点击次数:283
  • 下载次数: 1284
  • HTML阅读次数: 745
  • 引用次数: 0
历史
  • 在线发布日期: 2022-08-30
文章二维码