AUV移动探测下基于U-Net网络的本体噪声去除
CSTR:
作者:
作者单位:

作者简介:

李黎明(1999-),男,硕士生,主要从事水下噪声信号处理和水下机器人自主环境感知方向的研究。

通讯作者:

中图分类号:

TB566

基金项目:

中国科学院先导专项子课题(XDC03060105);国家自然科学基金项目(61973297);中国科学院青年创新促进会课题(2020209);机器人学国家重点实验室课题(2017-Z010)


Self-noise Removal Using U-Net for AUV-based Underwater Target Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在基于移动 AUV(自主水下机器人)平台的水下机动目标探测场景中,由于拖曳能力和探测孔径的限制,目标噪声极易淹没在本体噪声中。而且,本体噪声与目标噪声具有非常相似的频谱特性和倍频关系,进一步加重了目标噪声分析的难度。为降低本体噪声的影响、提高目标噪声的信噪比,开展了基于 U-Net 深度网络的水下混合噪声信号分离算法研究。通过仿真模型测试了算法在不同转速差、桨叶数差以及目标噪声信噪比条件下去除本体噪声的性能。实验结果初步表明:在目标信号信噪比不低于–10 dB 的条件下,算法可以对本体噪声进行有效去除。

    Abstract:

    Due to the limitation of towing capability and detection aperture,the target noise is easy to be submerged by the self-radiated noise under the condition of underwater moving target detection based on AUV ( Autonomous Underwater Vehicle ) platform. Moreover , the self-radiated noise has very similar spectral characteristics and frequency doubling relationships with target noise,which further aggravated the difficulty of target noise analysis. To reduce the influence of self-radiated noise and improve the signal-to-noise ratio of target noise,a source separation algorithm designed for underwater mixed noise condition based on U-Net is proposed. Performance of our algorithm is tested with different rotational speed difference,blade number difference and target noise signal-to-noise ratio. The experimental results show that the proposed algorithm can effectively remove the self-radiated noise when the signal-to-noise ratio of the target signal is not less than -10dB.

    参考文献
    相似文献
    引证文献
引用本文

李黎明,张微之,季子良,等. AUV移动探测下基于U-Net网络的本体噪声去除[J].数字海洋与水下攻防,2021,4(6):446-452

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-14
  • 出版日期:
文章二维码