AUV移动探测下基于U-Net网络的本体噪声去除
作者:
作者简介:

李黎明(1999-),男,硕士生,主要从事水下噪声信号处理和水下机器人自主环境感知方向的研究。

中图分类号:

TB566

基金项目:

中国科学院先导专项子课题(XDC03060105);国家自然科学基金项目(61973297);中国科学院青年创新促进会课题(2020209);机器人学国家重点实验室课题(2017-Z010)


Self-noise Removal Using U-Net for AUV-based Underwater Target Detection
Author:
  • LI Liming

    LI Liming

    State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016 ,China ;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169 ,China ;University of Chinese Academy of Sciences,Beijing 100049 ,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Weizhi

    ZHANG Weizhi

    State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016 ,China ;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169 ,China ;School of Artificial Intelligence,Shenyang University of Technology,Shenyang 110870 ,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JI Ziliang

    JI Ziliang

    State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016 ,China ;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169 ,China ;School of Information Engineering,Shenyang University of Chemical Technology,Shenyang 110142 ,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JING Yan

    JING Yan

    State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016 ,China ;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169 ,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • PANG Guofu

    PANG Guofu

    State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016 ,China ;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169 ,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Li

    WANG Li

    State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016 ,China ;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169 ,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SONG Sanming

    SONG Sanming

    State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016 ,China ;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169 ,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在基于移动 AUV(自主水下机器人)平台的水下机动目标探测场景中,由于拖曳能力和探测孔径的限制,目标噪声极易淹没在本体噪声中。而且,本体噪声与目标噪声具有非常相似的频谱特性和倍频关系,进一步加重了目标噪声分析的难度。为降低本体噪声的影响、提高目标噪声的信噪比,开展了基于 U-Net 深度网络的水下混合噪声信号分离算法研究。通过仿真模型测试了算法在不同转速差、桨叶数差以及目标噪声信噪比条件下去除本体噪声的性能。实验结果初步表明:在目标信号信噪比不低于–10 dB 的条件下,算法可以对本体噪声进行有效去除。

    Abstract:

    Due to the limitation of towing capability and detection aperture,the target noise is easy to be submerged by the self-radiated noise under the condition of underwater moving target detection based on AUV ( Autonomous Underwater Vehicle ) platform. Moreover , the self-radiated noise has very similar spectral characteristics and frequency doubling relationships with target noise,which further aggravated the difficulty of target noise analysis. To reduce the influence of self-radiated noise and improve the signal-to-noise ratio of target noise,a source separation algorithm designed for underwater mixed noise condition based on U-Net is proposed. Performance of our algorithm is tested with different rotational speed difference,blade number difference and target noise signal-to-noise ratio. The experimental results show that the proposed algorithm can effectively remove the self-radiated noise when the signal-to-noise ratio of the target signal is not less than -10dB.

    参考文献
    [1] 程玉胜,邱家兴,刘振.水声被动目标识别技术挑战与展望[J].应用声学,2019,38(4):653-659.
    [2] 秦松磊.矢量舷侧阵信号检测和目标方位估计研究[D].哈尔滨:哈尔滨工程大学,2019.
    [3] CHI C,PALLAYIL V,CHITRE M.Design of an adaptive noise canceller for improving performance of an autonomous underwater vehicle-towed linear array[J].Ocean Engineering,2020,202:106886.
    [4] ROBERT M K,BEERENS S P.Adaptive beamforming algorithms for tow ship noise canceling[C]//Conference proceedings UDT Europe 2002.La Spezia:Nexus Media,Ltd,2002.
    [5] 马启明,王宣银,杜栓平.振动噪声影响下的舷侧阵信号检测方法[J].上海交通大学学报,2008(4):634-638.
    [6] 方尔正,孙纯,桂晨阳.矢量舷侧阵平台自噪声空域滤波抑制方法[J].哈尔滨工程大学学报,2020,41(11):1636-1641.
    [7] SMARAGDIS P.Blind separation of convolved mixtures in the frequency domain[J].Neurocomputing,1998,22(1-3):21-34.
    [8] GAETA M,BRIOLLE F,ESPARCIEUX P.Blind separation of sources applied to convolutive mixtures in shallow water[C]//IEEE Signal Processing Workshop on Higher-order Statistics.Canda:IEEE,1997.
    [9] HANG C.Blind source separation of underwater acoustic signal by use of negentropy-based fast ICA algorithm[C]//2015 IEEE International Conference on Computational Intelligence & Communication Technology(CICT).Ghaziabad,India:IEEE,2015.
    [10] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Cham:Springer,2015.
    [11] 陶笃纯.舰船噪声节奏的研究(Ⅰ)——数学模型及功率谱密度[J].声学学报,1983(2):3-14.
    [12] LU J,SONG S,HU Z,et al.Fundamental frequency detection of underwater acoustic target using DEMON spectrum and CNN network[C]//2020 3rd International Conference on Unmanned Systems(ICUS).Harbin:IEEE,2020.
    [13] VINCENT E,GRIBONVAL R,FEVOTTE C.Performance measurement in blind audio source separation[J].IEEE Transactions on Audio Speech & Language Processing,2006,14(4):1462-1469.
    [14] JANSSON A,HUMPHREY E,MONTECHIO N,et al.Singing voice separation with deep U-Net convolutional networks[C]//18th International Society for Music Information Retrieval Conference.Suzhou:School of Arts & Social Sciences,2017.
    [15] HUANG P S,CHEN S D,SMARAGDIS P,et al.Singing-voice separation from monaural recordings using robust principal component analysis[C]//2012 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).Kyoto:IEEE,2012.
    [16] COLIN RAFFEL,BRIAN MCFEE,ERIC J.HUMPHREY,et al.Mir eval:a transparent implementation of common MIR metrics[C]//In Proceedings of the 15th International Society for Music Information Retrieval Conference.Taipei:ISMIR,2014.
    相似文献
    引证文献
引用本文

李黎明,张微之,季子良,等. AUV移动探测下基于U-Net网络的本体噪声去除[J].数字海洋与水下攻防,2021,4(6):446-452

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2022-01-14
文章二维码