深度学习在水声目标识别中的应用研究
作者:
作者简介:

王培兵(1987-),男,硕士生,主要从事水声信号与信息处理研究。

中图分类号:

TP391

基金项目:

国防基础科研项目(JCKY2017207B042)。


Research on Application of Deep Learning in Underwater Acoustic Target Recognition
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    水声目标识别技术是水声信号处理的重要组成部分,是水声信息获取与水声信息对抗的重要技术支撑。针对水声目标识别时探测数据量大、自动化程度不高、识别效率低下等问题,研究了深度学习在水声目标识别中的应用。首先,介绍了水声目标识别技术的研究现状及当前形势下面临的挑战。然后,对深度学习的网络结构原理及改进型进行了分析,并分别对深度学习在水声声信号识别领域和水声图像信号识别领域的应用现状做了阐述。最后,指出了由于受当前技术条件和水下复杂环境的制约,此方法尚且存在着不足之处。该方法为进一步优化深度学习算法、拓展深度学习技术应用范畴、提升水声目标识别效率提供了参考。

    Abstract:

    Underwater acoustic target recognition technology is an important part of underwater acoustic signal processing and an important technical support for underwater acoustic information acquisition and underwater acoustic information countermeasures. Aiming at the problems of large amount of detection data,low automation degree and low recognition efficiency in underwater acoustic target recognition,the application of deep learning in underwater acoustic target recognition was studied. First,the research status and the current challenges of underwater acoustic target recognition technology are introduced. Then,the network structure principle and improved form of deep learning are analyzed,and the application statuses of deep learning in underwater acoustic signal recognition and underwater acoustic image signal recognition are explained respectively. Finally,it is pointed out that due to the constraints of current technical conditions and the complex underwater environment,this method still has shortcomings. This mehod provides a reference for further optimization of deep learning algorithms,expansion of the scope of deep learning technology applications,and improvement of underwater acoustic target recognition efficiency.

    参考文献
    [1] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
    [2] 陈越超,徐晓男.基于降噪自编码器的水中目标识别方法[J].声学与电子工程,2018,1(1):30-32.
    [3] 柳革命,孙超,杨益新.基于特征融合的被动声呐目标识别[J].计算机仿真,2009,26(8):326-329.
    [4] 徐慧.水声目标被动识别相关技术研究[D].武汉:中国舰船研究院,2017.
    [5] RAJAGOPAL R,SANKARANARAYANAN B,RAO P R.Target classification in a passive sonar—an expert system approach[C]//International Conference on Acoustics.US:IEEE,2002.
    [6] LOURENS J G.Classification of ships using underwater radiated noise[C]//Conference on Communications & Signal Processing.US:IEEE,1988.
    [7] ARNAB D,ARUN K,RAJENDAR B.Feature analyses for marine vessel classification using passive sonar[C]//International Conference on Acoustics.US:IEEE,2005.
    [8] MAKSYM J N,BONNER A J,DENT C A,et al.Machine analysis of acoustical signal[J].Pattern Recognition,1983,16(6):615-625.
    [9] FARROKHROOZ M,KARIMI M.Ship noise classification using probabilistic neural network and AR model coefficients[C]//Oceans UDT.Europe:IEEE,2005.
    [10] TANMAY R,ARUN K,RAJENDAR B.Estimation of a nonlinear coupling feature for underwater target classification[C]//Oceans UDT.Europe:IEEE,2002.
    [11] VACCARO R J.The past,present,and the future of underwater acoustic signal processing[J].IEEE Signal Processing Magazine,1998,15(4):21-51.
    [12] LENNARTSSON R K,PERSSON L,ROBINSON J W C,et al.Passive underwater signature estimation by bispectral analysis[J].IEEE,2000,20(8):281-285.
    [13] LI Q H,WAN J L,WEI W.An application of expert system in recognition of radiated noise of underwater target[C]//Oceans UDT.Europe:IEEE,1995.
    [14] 王娜,陈克安.听觉感知特征在目标识别中的应用[J].系统仿真学报,2009,21(10):3128-3132.
    [15] 彭圆,申丽然,李雪耀,等.基于双谱的水声目标辐射噪声的特征提取与分类研究[J].哈尔滨工程大学学报,2003,24(4):390-394.
    [16] 章新华,王骥程,林良骥.基于小波变换的舰船辐射噪声特征提取[J].声学学报,1997,22(2):139-144.
    [17] 樊养余,孙进才,李平安,等.基于高阶谱的舰船辐射噪声特征提取[J].声学学报,1999,24(6):611-616.
    [18] 章新华,张晓明,林良骥.船舶辐射噪声的混沌现象研究[J].声学学报,1998,23(2):134-140.
    [19] 徐新洲,罗昕炜,方世良,等.基于听觉感知机理的水声目标识别研究进展[J].声学技术,2013,32(2):151-156.
    [20] 曹红丽,方世良.舰船辐射噪声的响度和音色特征模型[J].东南大学学报:自然科学版,2013,43(2):241-246.
    [21] 程玉胜,邱家兴,刘振,等.水声被动目标识别技术挑战与展望[J].应用声学,2019,38(4):654-655.
    [22] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
    [23] CHEN H,MURRAY A.A continuous restricted Boltzmann machine with a hardware amenable learning algorithm[C]//Artificial Neural Networks-ICANN 2002.Berlin:Springer,2002.
    [24] LEE H,EKANADHAM C,NG A Y.Sparse deep belief net model for visual area V2[C]//Proceedings of the Advances in neural information processing systems.Europe:IEEE,2008.
    [25] LUO H,SHEN R,NIU C,et al.Sparse group restricted Boltzmann machines[C]//Proceedings of the AAAI.US:AAAI,2011.
    [26] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradientbased learning applied to document recognition[C]//Proceedings of the IEEE.Europe:IEEE,1998.
    [27] IMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2015-03-25].http://www.cs.utexas.edu.
    [28] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2014.
    [29] GIRSHICK R.Fast R-CNN[C]//International Conference on Computer Vision.Piscataway:IEEE,2015.
    [30] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[C]//Annual Conference on Neural Information Processing Systems.Cambridge:MIT Press,2015.
    [31] HE K,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//International Conference on Computer Vision.Piscataway:IEEE,2017.
    [32] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
    [33] CHO K,MERNENBOER B,BAHDANAU D,et al.On the properties of neural machine translation:Encoder-decoder approaches[EB/OL].[2014-05-23].http://www.engi-neering.purdue.edu.
    [34] PEREZ J,ATTANASIO A C,NECHYPORENKO N,et al.A deep learning approach for underwater image enhancement[C]//International Work-Conference on the Interplay Between Natural and Artificial Computation.Europe:IEEE,2017.
    [35] WON K T,YU S C,YUH J K.Neural network-based underwater image classification for autonomous underwater vehicles[C]//Proceedings of the 17th World Congress,International Federation of Automatic Control.US:IFAC,2008.
    [36] ORENSTEIN E C,BEIJBOM O,PEACOCK E E,et al.Whoi-plankton-A large scale fine grained visual recognition benchmark dataset for plankton classification[J].Proceedings of the IEEE,2015,8(26):2357-2368.
    [37] 胡炎,单子力,高峰.基于 Faster R-CNN 和多分辨率SAR的海上舰船目标检测[J].无线电工程,2018,48(2):96-100.
    [38] 林明旺.深度学习在鱼类图像识别与分类中的应用 [J].数字技术与应用,2017,5(4):96-97.
    [39] 赵亮,王晓峰,袁逸涛.基于深度卷积神经网络的船舶识别方法研究[J].舰船科学技术,2016,38(15):119-123.
    [40] 张清博,张晓晖,韩宏伟.一种基于深度卷积神经网络的水下光电图像质量优化方法[J].光学学报,2018,38(11):4-8.
    [41] 王博.自主水下航行器的光视觉认知技术研究[D].哈尔滨:哈尔滨工程大学,2017.
    [42] 王念滨,何鸣,王红滨,等.基于卷积神经网络的水下目标特征提取方法[J].系统工程与电子技术,2018,40(6):14-20.
    [43] 王强.深度学习方法及其在水声目标识别中的应用[J].声学技术,2015,34(2):138-140.
    [44] CAO X,ZHANG X M,YU Y,et al.Deep learningbased recognition of underwater target[C]//DSP2016.Beijing:DSP,2016.
    [45] 严韶光,康春玉,李军,等.基于功率谱特征的CNN被动声呐目标分类方法[J].声学技术,2017,36(5):441-443.
    [46] 赵安邦,沈广楠,陈阳,等.HHT 与神经网络在舰船目标特征提取中的应用[J].声学技术,2012,31(3):272-276.
    [47] 程锦盛,杜选民,周胜增,等.基于目标MFCC特征的监督学习方法在被动声呐目标识别中的应用研究 [J].船舶科学技术,2018,40(9):116-121.
    引证文献
引用本文

王培兵,彭圆.深度学习在水声目标识别中的应用研究[J].数字海洋与水下攻防,2020,3(1):11-17

复制
分享
文章指标
  • 点击次数:571
  • 下载次数: 1428
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-03-09
文章二维码